国产一级簧片-国产一极毛片-国产一国产a一级毛片-国产一国产一有一级毛片-91三级视频-91大学生视频

藍(lán)鷗旗下品牌:鷗課學(xué)院
全國咨詢電話:13152008057
您的位置: 首頁 > 技術(shù)文章 > 【原創(chuàng)】Spark Standalong模式運行原理剖析

【原創(chuàng)】Spark Standalong模式運行原理剖析

2017-06-16 藍(lán)鷗
6077人 瀏覽:

  一、概述

  Apache Spark是一種快速和通用的集群計算系統(tǒng)。它提供Java,Scala,Python和R中的高級API,以及支持一般執(zhí)行圖的優(yōu)化引擎。它還支持一組豐富的更高級別的工具,包括Spark SQL用于SQL和結(jié)構(gòu)化數(shù)據(jù)的處理,MLlib機器學(xué)習(xí),GraphX用于圖形處理和Spark Streaming。

  Spark除了在Mesos或YARN群集管理器上運行,它還提供了一種簡單的獨立部署模式Standalone模式。接下來我們就以下面的WordCount代碼為例剖析Spark Standalone模式的運行原理。理解并掌握Spark Standalone模式的運行原理對后期進一步學(xué)習(xí)Spark相關(guān)技術(shù)有很大的幫助,同時也是Spark開發(fā)工程師崗位面試經(jīng)常被提問的地方。

  WordCount代碼如下:

1.jpg

  Standalone運行模式原理概要如下圖所示:

2.png

  二、Standalong模式運式原理剖析之天龍八“步”

  1、第一步:

  通過spark-submit指令將打好的Spark jar包提交到Spark集群中運行。先從Driver進程開始運行,Driver中包含了我們所編寫的代碼。

  首先執(zhí)行代碼中的前兩行代碼,

  //創(chuàng)建SparkConf對象  

  val conf = new SparkConf().setAppName("WordCount")  

  //創(chuàng)建SparkContext對象  

  val sc = new SparkContext(conf)

  這兩行代碼分別創(chuàng)建了SparkConf和SparkContext對象,在創(chuàng)建SparkContext對象的過程中,Spark會去做兩件很重要的事,就是創(chuàng)建DAGScheduler和TaskScheduler這兩個對象。然后,TaskScheduler會通過一個后臺進程負(fù)責(zé)與Master進行注冊通信,告訴Master有一個新的Application應(yīng)用程序要運行,需要Master管理分配調(diào)度集群的資源。

  2、第二步:

  Master接收到TaskScheduler的注冊請求之后,會通過資源調(diào)度算法對集群資源進行調(diào)度,并且與Worker進行通信,請求Worker啟動相應(yīng)的Executor。

  3、第三步:

  Worker接收到Master的請求之后,會在本節(jié)點中啟動Executor。因為集群中有多個Worker節(jié)點,那么也意味著會啟動多個Executor。一個Application對應(yīng)著Worker中的一個Executor。

  4、第四步:

  Executor啟動完成之后,會向Driver中的TaskScheduler進行反注冊,反注冊的目的就是讓Driver知道新提交的Application應(yīng)用將由哪些Executor負(fù)責(zé)執(zhí)行。

  5、第五步:

  Executor向Driver中的TaskScheduler反注冊完成之后,就意味著SparkContext的初始化過程已經(jīng)完成,接下來去執(zhí)行SparkContext下面的代碼。

  //從linux或者HDFS中獲取數(shù)據(jù)

  val lines = sc.textFile("hdfs://tgmaster:9000/in/resws")

  //進行單詞統(tǒng)計計數(shù)

  val result = lines.flatMap(_.split(" ")).map((_, 1))

  //將計算結(jié)果保存到HDFS中

  result.saveAsTextFile("hdfs://tgmaster:9000/out/res3")

  sc.stop()

  6、第六步:

  在SparkContext下面的代碼中,創(chuàng)建了初始RDD,并對初始RDD進行了Transformation類型的算子操作,但是系統(tǒng)只是記錄下了這些操作行為,這些操作行并沒有真正的被執(zhí)行,直到遇到Action類型的算子,觸發(fā)提交job之后,Action類型的算子之前所有的Transformation類型的算子才會被執(zhí)行。job會被提交給DAGScheduler,DAGScheduler根據(jù)stage劃分算法將job劃分為多個stage(階段),并將其封裝成TaskSet(任務(wù)集合),然后將TaskSet提交給TaskScheduler。

  7、第七步:

  TaskScheduler根據(jù)task分配算法,將TaskSet中的每一個小task分配給Executor去執(zhí)行。

  8、第八步:

  Executor接受到task任務(wù)之后,通過taskrunner來封裝一個task,并從線程池中取出相應(yīng)的一個線程來執(zhí)行task。

  task線程針對RDD partition分區(qū)中的數(shù)據(jù)進行指定的算子操作,這些算子操作包括Transformation和Action類型的操作。

  補充說明:

  1、taskrunner(任務(wù)運行器),會對我們編寫代碼進行復(fù)制、反序列化操作,進行執(zhí)行task任務(wù)。

  2、task分為兩大類:ShuffleMapTask和ResultTask。最后一個stage階段中的task稱為ResultTask,在這之前所有的Task稱為ShuffleMapTask。

  1. 廣告1
  2. 廣告2
  3. 廣告3
  4. 廣告4
主站蜘蛛池模板: 国产aⅴ一区二区| 亚洲伦| 中国一级淫片aaa毛片毛片| 成人免费午夜性视频| 波多野结衣在线看片| 91精品视频免费| 收集最新中文国产中文字幕| 亚洲国产品综合人成综合网站| 国内精品久久久久久影院8f| 91最新网站| 亚洲成a人片在线播放| 五月色婷婷综合开心网亚| 久久综合99re88久久爱| 毛片一区| 成人免费观看高清在线毛片| 一级特级毛片| 亚洲 欧美 91| 久久99国产精品视频| 国产自精品在线| 99视频一区| 日产国产精品亚洲系列| 欧洲乱码伦视频免费| 国产亚洲精品国产| 中国一级特黄大片毛片| 亚洲成a人在线观看| 久久精品一区| 国产91在线 | 亚洲| 亚洲综合无码一区二区| 久青草国产手机在线观| 国产全部理论片线观看| 在线观看日韩| 久久综合一本| 国产成人免费高清在线观看| 在线看片不卡| 久久国产视频网站| 97成人精品视频在线播放| 性久久久久久久久久| 国内精品久久久久久久亚洲| 一色屋精品亚洲香蕉网站| 视频一区在线播放| 国产精品亚洲综合|